วันศุกร์ที่ 15 มิถุนายน พ.ศ. 2561

7.ประเภทของข้อมูล


    
7.ประเภทของข้อมูล

การแบ่งประเภทของข้อมูล มีวิธีการแบ่งได้หลายวิธี ตามเกณฑ์ในการจำแนก เช่น


     1. จำแนกตามลักษณะการเก็บข้อมูล แบ่งได้เป็น 2 ประเภท คือ
               1.1 ข้อมูลที่ได้จากการนับ (Counting Data) เช่น จำนวนนักศึกษาที่สอบผ่าน จำนวนรถที่ผ่านเข้า - ออกมหาวิทยาลัยในช่วงเวลา
08.00 - 09.00 น . ซึ่งข้อมูลที่ได้จะเป็นเลขจำนวนเต็ม บางครั้งเรียกว่าเป็นข้อมูลที่ไม่ต่อเนื่อง
               1.2 ข้อมูลที่ได้จาการวัด (Measurement Data) เช่น น้ำหนักของนักศึกษาแต่ละคน ส่วนสูงของนักศึกษาแต่ละคน ระยะเวลาในการ เดินทางจากบ้านมายังที่ทำงานของพนักงาน แต่ละคน ปริมาณน้ำฝนที่วัดได้ ข้อมูลที่ได้จะมีลักษณะเป็นเศษส่วน หรือจุดทศนิยม บางครั้ง  เรียกว่าข้อมูลแบบต่อเนื่อง
               1.3 ข้อมูลที่ได้จากการสังเกต ( Ob servation Data) เป็นข้อมูลที่ได้จากการติดตามหรือเฝ้าสังเกตพฤติกรรม หรือปรากฏการณ์ต่างๆ เป็นต้น
               1.4 ข้อมูลที่ได้จากการสัมภาษณ์ ( Interview Data) เป็นข้อมูลที่ได้จากการถามตอบโดยตรง ระหว่างผู้สัมภาษณ์ และผู้ถูกสัมภาษณ์

      2. จำแนกตามลักษณะข้อมูล แบ่งได้เป็น 2 ประเภท คือ
               2.1 ข้อมูลเชิงปริมาณ (Quantitative Data) เป็นข้อมูลที่แสดงความแตกต่างในเรื่องปริมาณหรือขนาด ในลักษณะของตัวเลขโดยตรง เช่น อายุ ส่วนสูง น้ำหนัก ซึ่งแบ่งได้เป็น 2 ประเภท คือ
                     - ข้อมูลแบบไม่ต่อเนื่อง (Discrete Data) หมายถึง ข้อมูลที่มีค่าเป็นเลขจำนวนเต็มที่มีความหมาย เช่น จำนวนสิ่งของ จำนวนคน   เป็นต้น
                       - ข้อมูลแบบต่อเนื่อง ( Continuous Data) หมายถึง ข้อมูลที่อยู่ในรูปตัวเลขที่มีค่าได้ทุกค่าในช่วงที่กำหนด และมีความหมายด้วย เช่น รายได้ น้ำหนัก เป็นต้น
               2.2 ข้อมูลเชิงคุณภาพ (Qualitative Data) เป็นข้อมูลที่แสดงลักษณะที่แตกต่างกัน เช่น เพศชาย เพศหญิง จะเป็นข้อมูลที่ไม่ได้อยู่ในรูปของตัวเลขโดยตรง

     3. จำแนกตามการจัดการข้อมูล แบ่งได้เป็น 2 ประเภท คือ

               3.1 ข้อมูลดิบ (Raw Data) เป็นข้อมูลที่ได้จาการเก็บ ยังไม่ได้จัดรวบรวมเป็นหมู่เป็นกลุ่มหรือจัดเป็นพวก
               3.2 ข้อมูลที่จัดเป็นกลุ่ม (Group Data) เป็นข้อมูลที่เกิดจากการนำข้อมูลดิบมารวบรวมเป็นกลุ่มเป็นหมวดหมู่

     4. จำแนกตามแหล่งที่มาของข้อมูล แบ่งได้เป็น 2 ชนิด คือ

               4.1 ข้อมูลปฐมภูมิ (Primary Data) เป็นข้อมูลที่ได้มาจากการที่ผู้ใช้เป็นผู้เก็บข้อมูลโดยตรง ซึ่งอาจจะเก็บด้วยการสัมภาษณ์หรือสังเกตการณ์ เป็นข้อมูลที่มีความน่าเชื่อถือมากที่สุด เนื่องจากยังไม่มีการเปลี่ยนรูป และมีรายละเอียดตามที่ผู้ใช้ต้องการ แต่จะต้องเสียเวลาและค่าใช้จ่ายมาก เช่น ข้อมูลที่ได้จากการนับจำนวนรถที่เข้า - ออก มหาวิทยาลัยในช่วงเวลา 08.00 - 09.00 น . ข้อมูลจากการสัมภาษณ์นักศึกษา
               4.2 ข้อมูลทุติภูมิ (Secondary Data) เป็นข้อมูลที่ได้มาจากแหล่งข้อมูลที่มีผู้เก็บรวบรวมไว้แล้ว เป็นข้อมูลในอดีต และมักจะเป็นข้อมูลที่ได้ผ่านการวิเคราะห์เบื้องต้นมาแล้ว ผู้ใช้นำมาใช้ได้เลย จึงประหยัดทั้งเวลาและค่าใช้จ่าย บางครั้งข้อมูลทุติยภูมิจะไม่ตรงกับความต้องการหรือมีรายละเอียดไม่เพียงพอ นอกจากนั้นผู้ใช้จะไม่ทราบถึงข้อผิดพลาดของข้อมูล ซึ่งอาจจะทำให้ผู้ที่นำมาใช้ สรุปผลการวิจัยผิดพลาดไปด้วย เช่น สถิติการเกิดอุบัติเหตุโดยรถจักรยานยนต์ของนักศึกษาในปี 2540 - 2541 เป็นข้อมูลที่บางครั้งอาจถูกแปรรูปไปแล้ว แต่เนื่องจากบางครั้งเราไม่สามารถที่จะจัดเก็บข้อมูลปฐมภูมิได้เราจึงต้องศึกษาจากข้อมูลที่มีการเก็บรวบรวมไว้แล้ว

      5. แบ่งตามมาตรของการวัด จะแบ่งได้ 4 ชนิด
               5.1 มาตรวัดนามบัญญัติ (Nominal Scale) เป็นการวัดค่าที่ง่ายที่สุดหรือสะดวกต่อการใช้มากที่สุด เพราะเป็นการแบ่งกลุ่มของข้อมูล เพื่อสะดวกต่อการวิเคราะห์ โดยการแบ่งกลุ่มจะถือว่าแต่ละกลุ่มจะมีความเสมอภาคกันหรือเท่าเทียมกัน ค่าที่กำหนดให้แต่ละกลุ่มจะไม่มีความหมาย และไม่สามารถมาคำนวณได้ เช่น เพศ มี 2 ค่า คือ ชายและหญิง การจำแนกเพศอาจจะกำหนดค่าได้ 2 ค่า คือ ถ้า 0 หมายถึงเพศชาย ถ้า 1 หมายถึงเพศหญิง เป็นต้น
               5.2 มาตรวัดอันดับ (Ordinal Scale) เป็นการวัดที่แสดงว่าข้อมูลที่อยู่ในแต่ละกลุ่มจะมีความแตกต่างกัน โดยพิจารณาจากลำดับด้วย นั่นคือสามารถบอกได้ว่า กลุ่มใดดีกว่ากลุ่มอื่นๆ หรือ กลุ่มใดที่มากกว่าหรือน้อยกว่ากลุ่มอื่นๆ แต่ไม่สามารถบอกปริมาณความมากกว่าหรือน้อยกว่าเป็นเท่าใด และค่าที่กำหนดให้แต่ละกลุ่มไม่สามารถนำมาคำนวณได้ เช่น คำถามที่ว่า “ ท่านอยากทำอะไรเมื่อมีวันหยุดพิเศษ ” โดยให้เรียงลำดับตามที่ต้องการจะทำมากที่สุด 5 อันดับ
          - 
จากข้างต้นจะพบว่า ท่านนี้ชอบดูทีวีที่บ้านมากกว่าไปพักผ่อนต่างจังหวัด แต่ไม่ทราบว่า ชอบมากกว่าเท่าใด
            5.3 มาตรวัดแบบช่วง (Interval Scale) เป็นการวัดที่แบ่งสิ่งที่ศึกษาออกเป็นระดับหรือเป็นช่วงๆ โดยแต่ละช่วงมีขนาดหรือระยะห่างเท่ากัน ทำให้สามารถบอกระยะห่างของช่วงได้ อีกทั้งบอกได้ว่ามากหรือน้อยกว่ากัน เท่าไร จึงทำให้มีความแตกต่างกันในเชิงปริมาณ เช่น อุณหภูมิ คะแนนสอบ ซึ่งตัวเลขเหล่านี้ บวก ลบ ได้ แต่ คูณ หาร ไม่ได้ แต่ศูนย์ของข้อมูลชนิดนี้เป็น ศูนย์สมมติ ไม่ใช่ศูนย์แท้ เช่น อุณหภูมิ 0 องศาเซลเซียส ไม่ได้หมายความว่า ณ จุดนั้นไม่มีความร้อนอยู่เลย หรือการที่นักศึกษาได้คะแนน 0 ก็ไม่ได้หมายความว่า นักศึกษาไม่มีความรู้เลย แต่เป็นเพียงตัวเลขที่บอกว่า นักศึกษาทำข้อสอบนั้นไม่ได้
                5.4  มาตรวัดอัตราส่วน (Ratio Scale) เป็นการวัดที่ละเอียดและสมบูรณ์ที่สุด ที่สามารถบอกความแตกต่างในเชิงปริมาณ โดยแบ่งสิ่งที่ศึกษาออกเป็นช่วงๆ เหมือนมาตรวัดอันตรภาค ที่แต่ละช่วงมีระยะห่างเท่ากัน และ ศูนย์ของข้อมูลชนิดนี้เป็นศูนย์แท้ ซึ่งหมายถึงไม่มีอะไรเลยหรือมีจุดที่เริ่มต้นที่แท้จริง และสามารถนำตัวเลขนี้มา บวก ลบ คูณ หารได้ เช่น ความยาว เวลา
ผลการค้นหารูปภาพสำหรับ 8v,rb;g9vin

   
















_______________________________________________________________________________

ไม่มีความคิดเห็น:

แสดงความคิดเห็น